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SUMMARY

The number of extra pair nestlings in a brood is the basic information to
investigate extra-pair fertilization in socially monogamous birds, an interesting
pattern of behaviour that has been observed in some species. Under
unconstrained randomness, Poisson streams of events are expected. But other
patterns of randomness may arise, suggesting new research questions. Starting
from a coordinated approach to count models, we discuss Zipf-Mandelbrot self-
organizing scaling laws, which are typical of phenomena shaped as a result of
conflicting interests, and some extensions of Mandelbrot’s model. While the
traditional count models (Poisson, binomial, negative binomial or
hypergeometric) seem inappropriate, the logarithmic, truncated logarithmic,
Zipf-Mandelbrot and discrete lognormal models consistently provide the best fit
to the available data, indicating that probably some females are more prone than
others to have extra pair nestlings. This suggests a delicate balance: the number
of extra pair nestlings in the progeny is the result of conflicting behaviours, the

search for genetic diversity and the need to ensure male cooperation in raising
the brood.
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This book concentrates, not on how to do an analysis, but on how to choose the
right sort of analysis, and how to make sense of the answers. [...]

Statistical methods, apparently quite unrelated to each other, are in fact different
aspects of the same central theory. [...] Statistical methods constitute a tool, often
useful but sometimes abused.

[...] Biologists now use computers to proliferate statistical analyses, which have
become an integral part of their work. But [...] sometimes an analysis is applied to
data which contradict the assumptions of that analysis!

N. Gilbert, Biometrical Interpretation (Preface)

1. Introduction

The reason why some females of socially monogamous bird species seek extra-
pair fertilizations is not clear, and it is to some extent important to assert whether the
number of extra-pair young within and among broods follows some pattern of
randomness which may support one of the possible explanations put forward by other
researchers (Petrie and Kempenears, 1998).

The Poisson model may be looked at as a yardstick, compared to which other
models are overdispersed or underdispersed. Moreover, the fact that the differential

entropy I(p)= _[1 f, (x)ln[ f, (x)]dx attains its maximum over all f which are

positive only for x>0 and have finite expectation for the exponential density

[ (x)=5 e’ I, may be interpreted as meaning that the exponential distribution is

the most uncertain among all distributions of nonnegative random variables with
finite expectation. Therefore, for all ¢ >0, the Poisson process has the greatest As-
dimensional entropy in the interval (0,#) among all homogeneous point processes

with the same given intensity A=+>0 (Rényi, 1964). For that reason, Poisson

streams of events are generally interpreted as representing unconstrained randomness,
but this does not preclude the data from exhibiting other patterns of randomness.
Recently, Neuhduser et al. (2001), using data about the number of extra-pair
nestlings in broods of yellow warblers (Dendroica petechia), collected by Yezerinac
et al. (1995), of hooded warblers (Wilsonia citrina), published by Stutchbury et al.
(1994), and collared flycatchers (Ficedula albicollis), from Sheldon and Ellegren
(1999), cf. columns 1-3 in Tables 1-3, challenged previous Poisson fits, and carried
out a detailed investigation into the departure from a specific randomness hypothesis,
namely an exchangeability hypothesis, expressed by a multivariate hypergeometric
model, a form of mild dependence, with stationary probabilities. But in fact the
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observed value of the G* goodness-of-fit statistic and the corresponding p -values
show that their multivariate hypergeometric model is in general worse than the
Poisson model. On the other hand, this complex multi-hypergeometric model and the
cumbersome computations associated with it are irrelevant: as we shall explain in
Section 4, to evaluate expected values only univariate hypergeometric margins are
needed, and hence their exceedingly complex algorithm is unjustified.

The purpose of modelling is to achieve a generality that does not exist in actual
observational results, in other words, to abstract from the data a general model that
encompasses all possible sampling results, to extract knowledge from information.
The built in dependence assumption that comes from sampling results rather than a
sensible rationale is far from convincing, and the poor fit exhibited in Neuhduser et al.
(2001) ought to be expected, as will be further discussed in Section 4. But one of the
merits of Neuhduser et al. (2001) is to show that there is evident departure from the
kind of randomness expressed by the hypergeometric model. We may therefore
suspect that in those species where extra-mating has been studied, there are individual
differences from female to female, as regards extra-mating strategies. We cannot
conclude, however, whether this means different attitudes towards this kind of sexual
behaviour, or whether different females have diverse extra-mating opportunities. We
also ignore the distribution of successful extra-mating.

Models that are more closely related to the Poisson — even a crude Poisson model
itself, with infinite support — are more appropriate than the hypergeometric model.
The Poisson model may, as a side effect, incorporate the randomness derived from
extra-mating opportunities, and on the other hand, as the Bernoulli filtered Poisson
process is still Poisson, it may also incorporate extra-mating success.

The fact that both the Poisson and the multivariate hypergeometrlc provide
exceedingly bad fit, in the generality of cases, does not mean that randomness has to
be rejected, since other patterns of randomness may apply. We examine several
alternative count models that stem from a basic Poissonian assumption in Section 2,
and in Section 3 we investigate their goodness-of-fit to the number of extra - pair
nestlings in broods of size s. Although much care must be taken in drawing
conclusions based on such small samples, we shall observe that Zipf’s law or the
more general Zipf~-Mandelbrot and discrete lognormal models account fairly well for
the observed data.

The presentation of discrete models in Section 2 focuses on enhancing relations
between different count models and how the unconstrained randomness of the
Poisson model is progressively reduced by conditioning to find other well-known
models such as the binomial and the hypergeometric, or by allowing for individual
variability in negative binomial models. The logarithmic model, which can be derived
as the limit of zero-truncated negative binomial distributions, may then be
considerably generalized — in the sense that the parameter space is much wider — by
right truncation, and the resulting Zipf or extended Zipf-Mandelbrot scaling laws
exhibit an interesting “manicheist" pattern of randomness, that is appropriate to
account for the equilibrium between conflicting tensions observed in many social
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phenomena. A likely pattern for these females’ behaviour, which seems to combine
the eagerness for genetic diversity in the future with the present need to ensure male
cooperation in raising the brood, which is supported by an excellent fit.

Most of the models we use are from the Katz family (Katz, 1965), whose
probability mass functions exhibit nice recursive relations (Panjer, 1981). We also
work out a discrete lognormal distribution that seems appropriate for skewed data;
moreover, it generalizes Zipf-Mandelbrot laws for self-organizing phenomena that
maintain a similar structure at various scales: scale has a bearing in structural
organization and, on the other hand, the limit of discrete lognormal distributions when
the location parameter goes to -« is a Zipf-Mandelbrot distribution. The fit is in
most cases almost as good as with the logarithmic or truncated-logarithmic
distributions, and for very small samples it is even better. In the concluding Section 4,
we comment on some points in the philosophy and practice of model fitting, stating
some disagreements with Neuhduser et al. (2001).

2. Count models and random patterns — a coordinate presentation
of useful models

The classical presentation of count models is to use X ~ Hypergeometric(N,n, p)

for the number of successes in random sampling without replacement from a finite
population (which implies a mild form of dependence, exchangeability), to use
Y ~ Binomial(n,p) as suitable for the number of successes in Bernoulli trials, i.e.

when sampling with replacement (independent trials), and to adopt W ~ Poisson(1) as
the limit of a sequence of binomial random variables under a “stable in average"
condition, E [X . ] =np —-~z—>4>0. Multivariate extensions with these margins are

easily derived along similar paths.

This classical presentation has the advantage of immediate interpretation in terms
of the most common sampling strategies. Moreover, when n< N it is almost
irrelevant to sample with or without replacement, and in that case
X ~ Hypergeometric(N,n,p) may be approximated by the simpler (two parameters
instead of three) Y ~ Binomial(n,p). On the other hand, for large values of » and
p=0, W~ Poisson(np) is a good approximation for Y ~ Binomial(n,p), a further
simplification, since we have to deal with only one parameter.

For some population studies, more sophisticated counting models are needed. In
what follows, we present a coordinate description of the most important count
models. Starting from the Poisson model, appropriate for unconstrained randomness,
we obtain the binomial model by conditioning a Poisson summand on the observed
sum, and the hypergeometric model by further conditioning a binomial summand on
the observed sum, and comment on the constrained randomness brought in by
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increased information (smaller variance). On the other hand, there may be room for
individual variability, and mixing leads to negative binomial models.

At that stage, the concepts of underdispersion and overdispersion deserve some
comments, as well as the recursive expressions used by Katz (1965) to organize
discrete families of distributions, later explored by Panjer (1981) to obtain simple
expressions for the density of randomly stopped sums. Binomial, Poisson and
negative binomial are the non-degenerate solutions of Panjer’s functional equation. If
we relax the recursive relation, we obtain two other nondegenerate solutions, the
Engen and the logarithmic models; the latter is appropriate when data show some
tendency for clustering.

All these models can be further specialized by truncating the right tail. An
important point is that the parameter space may be then considerably enlarged. The
truncated logarithmic model, for instance, no longer has the restriction 8 € (0,1), and
for 6=1 we have Zipf’s model P(X =k)c1,k=1,..,N, which accounts for “least
effort" , namely for equilibriumin accommodating conflicting needs.

Mandelbrot (1983) considerably generalized the useful part of Zipf’s ideas by
introducing location (4 ) and shape (&) parameters, P(X =k)« W, k=1,.,N.

Observe that a scale parameter is irrelevant in these “scaling laws”, since it would be
absorbed into the multiplicative normalizing costant. They are therefore userful for
self-organizing phenomena, those that in some sense are scale invariant.

We introduce a non-trivial extension of Mandelbrot’s class of models, by letting
the shape @(k) depend on k. The discrete lognormal random variable, with

2
probability mass function p, x%exp(—@)=#ﬁ, k=12,..., is an important
k
model from that extended class. More generally, the discrete lognormal family, with
2
probability mass function p, < %exp(—% (-"—‘—';l‘i) ), k=12,..,ueR,o0>0, seems a

likely model for many discrete skewed data.
Alongside the description of models, we comment on parameter estimation and
give appropriate references.

2a. Poisson Randomness and Count Data Models — Poisson and truncated
Poisson, binomial and hypergeometric.

First order approximations are successfully used in all branches of mathematical
modelling, and this is a natural explanation of the wide use of the Poisson model.

In fact, apart from stationarity and independence (in disjoint observation windows)
of the increments, a third axiom rules out coincidental observations, and postulates
local linearity, in the sense that the probability of a singlc observation is
approximately proportional to the size of an infinitesimal observation window of area
dA:
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P(X,-X, =1)=1d4+o0(d4).

A+dA

These three basic ideas are enough to establish that the number of occurrences in a
region of size 4 is
k k=0,1,..

X, = e (24)
Po=e

E [X ) } = 1A, so that the local linearity of the probability of a single occurrence in

an infinitesimal window is mirrored by a global linearity for the expected values. In
what follows we shall assume that the global area has unit size 4=1.

Poisson randomness is therefore appropriate whenever we feel that expected
values may be considered “stable on average" (Recall that the Poisson arises as the
limiting form of a sequence X ~ Binomial(n,p ) when the expected value
E (X )=np =~A.). Examples are the number of sugar cane plants germinating per 10
m’ plot the number of nests per 100 m? plot in a pine wood and the number of
butterflies caught per hour in a specific field. This is, indeed, the simpler
mathematical translation of our faith in the regularity (and therefore predictability) of
phenomena. It is natural to estimate A by x, which is in fact the maximum likelihood
estimate of the rate 1.

There are, moreover, many other mathematical advantages of the Poisson model,
for instance general Poisson random variables are the building blocks of infinitely
divisible random variables, those that may be decomposed as sums of infinitesimal
independent random summands. This is, of course, a strong modelling asset, since
many observed phenomena are the result of infinitely many contributing effects. We
shall pursue the matter no further here, but draw the reader’s attention to the guidance
that statistical knowledge may provide on the choice of models, that on one hand they
must be useful — i.e. mathematically tractable — and on the other hand they must be
appropriate, in the sense that they have built in properties that reflect known
properties of the phenomena at hand.

A crude Poisson model may be useful, even though it has infinite support, and the
phenomenon we wish to model is clearly finite. In order to use a chi-square goodness-
of-fit test, care must be taken that 20, =Ze, and a standard practice is to consider

the N -th class as a composite aggregate class, corresponding to k> N .

Another possibility is to truncate the right tail of the Poisson model, considering
that for physical reasons k>N is unobservable. The truncated model has
probabilities
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Jj=

In this case, in order to estimate A (maximum likelihood) from the data, we must
solve

N ) li
Z (x—J)_." =0,
j=0 J:

which is straightforward using Cohen’s (1961) tables. Moore (1954) suggested the
estimator

- X
A=Xh

where m stands for the number of observed values that are less than N —1 , which we
shall use since it is easier to compute and is an unbiased estimator of A .

The success of the Poisson model derives from striking “conservative”
mathematical properties: if X ~ Poisson(A), Y ~ Poisson() and X and Y are
independent, then X +Y ~ Poisson(A + ), and thus incorporation of new information
can be achieved, in many situations, through a simple modification of the parameter,
the structure of the model not being modified. A similar conservative result holds for
binomial filtering (or thinning): if X ~ Poisson(1) goes through a binomial filter with
probability of success p, the resulting model is X , ~ Poisson(pA) .

From the result on the addition of independent Poisson random variables, by
conditioning one of the summands on the observed value of the sum we obtain a
binomial (more information yields a model with smaller variance): if
X, ~ Poisson(4 ), for k=1,..,,r , are independent,

~ Binomial [s,zr‘], T = .
Zx} =5 1

=1

More generally, if X =(X e X ) is multi-Poisson, the conditional distribution of
X given that X +..+X =n is multinomial; this is the basis for the analysis of
count data with general chi-square statistics comparing observed counts with the
corresponding expected values using either the classical chi-square statistic X , the
likelihood ratio statistic G, or general power divergence statistics (Cressie and Read
1984).
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A similar result holds for independent binomial summands: if

X ~Binomial(n,p), and N = an , then X +..+X ~Binomial(N,p) and
=

y

X, I‘ZX o~ Hypergeometric{N ,s,zrk] , where 7 =-- . As this last relation may have
J=t j_s

been one (unstated) reason for Neuhiduser et al.’s (2001) choice of hypergeometric

randomness, we also investigate a binomial fit, since we feel more inclined towards

an unconditional Poisson model than towards an unconditional binomial model. We

use the maximum likelihood estimate of the binomial parameter p, the individual

probability of success in the sequence of Bernoulli trials, which in this case coincides
with the minimum chi-square and the method of moments estimates.

The above results show that the binomial and the hypergeometric (and their
multivariate extensions), usually derived as count models associated with simple
random sampling, with or without replacement, respectively, may also arise in
connection with Poisson randomness. In the following sections, we shall show that
other important discrete distributions are closely related to the Poisson law.

As we observed above, binomial filtering (or thinning) of the Poisson distribution
results in a filtered Poisson distribution. For illustration purposes, consider the
following situation. Let us assume that the number of times a female encounters
another male (not her social mate) may be modelled as X ~ Poisson(4) . Assume that
the probability that copulation ensues from each encounter is «, and that the
probability that a copulation will eventually lead to a (extra-pair) nestling is £,
independently of what happens in any other occurrence. Thus the number of extra-
pair nestlings is modelled by the filtered X, ~ Poisson(Aaf) .

Assume also that the number of times the female copulates with her social mate
can be modelled as Y ~ Poisson(u), and that the probability that a copulation will
eventually lead to a nestling is 7, so that the number of non extra-pair nestlings is
Y, ~ Poisson(ur) .

Accepting independence between X and Y (and, for honesty sake, this might not
be true in the real world), then, if we draw a sample of broods and consider a specific
brood size of s (that is, conditioning on the fact that X, +Y, =s), the model that

describes the number of extra-pair nestlings will be X ~ Binomial(s,Ta‘Z,"fL—”) . Thus it

seems worthwhile to investigate a binomial fit in this case study (with disappointing
results, as we shall see).

A final observation on Poisson, binomial and hypergeometric models: we derived
the binomial distribution by conditioning a Poisson summand on the observed value
of the sum, and the hypergeometric law by conditioning a binomial summand on the
observed value of the sum (assuming independence of summands, and equal
parameter p in the latter case). Comparing the variances of X ~ Poisson(4),
Y ~ Binomial(n, p) and W ~ Hypergeometric(N,n, p) , with equal means, np =1,
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—-n

var(¥) = np(1 - p) ?’v_l

<var(Y)=np(l- p) < var(X) = A = np.

The Poisson model is mathematically simpler — one single parameter, and the
family of Poisson random variables is closed under summation and binomial filtering
—, but on the other hand the hypergeometric model has more information.

As we have seen, the Poisson model accounts for unconstrained randomness. The
binomial model, as an alternative to the usual presentation via counting successes in
sampling with replacement, has been obtained as the posterior distribution of a
Poisson summand conditioned on the value of the sum — extra information that
diminishes randomness, bringing in more information, and hence a smaller variance.
The hypergeometric model, aside from being the model for counting successes in
sampling without replacement, has been shown to be the model for a binomial
summand conditioned on the observed sum, and increased information once again
decreases dispersion and further constrains randomness.

If the sampling fraction % is low, i.e. n< N, var(W) ~ var(Y) : the probability of
including the same element more than once in the sample, when sampling with
replacement, is very low, and sampling with or without replacement is an idle
question, since both sampling strategies give the same amount of information. On the
other hand, if p~0, var(Y)~ var(X), a clear indication that the Poisson law is a
good approximation of the binomial when the variance is close to the expectation.

2b. Negative binomial as a gamma mixture of Poisson distributions;
truncated negative binomial.

The geometric model — and, more generally, the negative binomial model of
which the geometric is not but a special case — are interesting alternatives to the
Poisson model, when we need to account for individual variability. In the case at
hand, this is individual variability in the females’ patterns of sexual behaviour.

Let us suppose that the appropriate model for each female is X ~ Poisson(A)

(var(X)=E(X)=A). As regards the whole population, we may model A as a
random variable A ~ Exponential(5) , i. . with distribution function

NS

FA(A)=[l—e ]z(o_m)(,l), 550,
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In this hierarchical model,

E(X, |=E[E(X|A)]=E(A)=6
and

var[X”)= E[var(X | A)]+var[E(X |A)] = E(A)+var(A) = S+6 .

Thus we obtain a model with var[X H]>var(X ), which clearly accounts for
higher diversity.

The mixture distribution can easily be derived: f (1) =% e’l (M(A) , hence

:.1— y e-y dy = 1 ( 6 ), k=0,l,
okl 1+4 1+4 1+6\1+44

and thus X ~ Geometric(sl). For that reason, some authors consider the geometric

model (and more generally Y ~ NegativeBinomial(v,55) with index v>0, ie.

p, ={’””"] ﬁ,)v(%)k, k=0,1,..., which may be derived using similar arguments

v-1

with the Gamma with index v as mixing distribution) as a “more dispersed" Poisson.
In the general case, when both parameters are unknown, the easiest estimation
method is the method of moments, equating sample and population means and
variances, respectively. As we are working with the negative binomial located at 0,
E(Y)="%2 and var(Y) =", therefore
14

As an alternative, the Mean-and-Zero-Frequency method equates the observed
and expected number of zero values, and the sample mean and population mean. Thus
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and

C 1= -
2-x,

P

v

Infy 1-p° 1-p x P x
: T XS ey =
from which we get -, g W/ ln[l+P ] s, » Where

P =l—;,’i . Piegorsch (1990) recommends minimum chi-square estimation, on the

grounds that it is slightly less biased than maximum likelihood or method of moments
estimation, provided that the sample size is greater than 20. For a discussion of the
relative merits of minimum chi-square and maximum likelihood criteria, cf. Berkson
(1978) and the ensuing discussion.

Although the negative binomial distribution is infinitely divisible, and hence a
non-integer index may be used, we shall limit our investigation to the classical case,
and use an integer approximation for v. Whenever v is too small, we use the shifted
logarithmic model (Fisher et al., 1943, derived the logarithmic model as the limit of
zero truncated negative binomial distributions).

As in the Poisson case, the support of the negative binomial is infinite (as happens
for all infinitely divisible laws), and we may derive finite support models using
truncation. There are no closed forms for parameter estimation in the case of
truncated models. For instance, for the geometric model truncated to the right of s,

with p, =L("”LM , k=0,..,s, the maximum likelihood estimate p satisfies the
1-(1-p)

equation

p

x+l

n Z x, n(s+1)(1-p)"=0’
o l-p 1-(1-p)

which, however, is easily handled in the example that we work out.

2¢. Katz family of discrete random variables.

If W ~ Poisson(A), the recursive expression p  =+;p, = (a +%) p, holds for
k=0,1,..,with a=0 and g=41.

If Y ~ Binomial(n,p), we may write p =%%:%p =(a "’Tﬂ;T)P‘ , with ¢ =%

k+1 1-p p-1
and g=422  for k=0,..,n-1.



92 T. A. Marques', D. D. Pestana, S. F. Velosa

On the other hand, if X ~ NegativeBinomial(v, p), i.e.
P(X =k) =,[*:fl-']p'(1-p)' , for k=0,1,... we have p =B p =(a+L)p ,

+1 k+1
with a=1-p and g=(v-1)(1-p).

It is interesting to observe that the models mentioned above are the only ones
whose probability mass function satisfies the recursive relation

P B

=ag+— n=0,1,...
P, n+l

(Panjer’s recursive expression, which had been used by Katz (1965) in the
a.+ﬁ.n
n+l1

equivalent form -% = , n=0,1,..., to classify families of discrete distributions).

In fact, multiplying P, = a+ p, by s ™ and adding for n>0, we obtain the

n+l

differential equation

for the probability generating function P (s)= Z p s’ , whose absolutely monotone
a,p . "

solutions are the probability generating functions
P (s)=1,case a=f=0,i.e. X ., =0, the degenerate random variable with
unit mass at 0. )
2. P (s)= i a=0 (and necessarily SB>0), and therefore
0.5

X oy Poisson(f) .

3. P (9)=(E

X

s
) ;X - NegativeBinomial(“;ﬁ,l - a) if ae(0,1) and

l-as

a+,8>0.

4. P (s)=((1—;’{—l)+L_ls)_(l+§); if @<0, 2% =p>0 and we recognize the
Xap a

a

probability generating function of X ., ~ Binomial (-—l—é,ﬁ) with
-1 —é eN’ .
" Cf. Rolski et al. (1999) for an alternative proof.

An important point is that if W ~ Poisson(A), ";‘WW)) =4=1, a good reason to use

the Poisson distribution as a yardstick in what regards dispersion.
On the other hand, if Y ~ Binomial(n, p) , 57 =252 <1, Y is underdispersed.

E(Y)
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We have seen that the geometric random variable, allowing for individual
diversity, is more dispersed than the Poisson, and more generally if

X ~ NegativeBinomial(v,p) , a2 =1>1, X is overdispersed.

Panjer’s family may be considerably extended by using weights,

P B n=01,..

+
p, (n+Dy,
(Velosa, 2003), or if we relax the defining condition, by allowing

— =g+ B n=kk+1,...,

i.e. the relation holds only for n>k >0 (Hess et al., 2002). The case k =1 has been
studied by Sundt and Jewell (1981) and by Willmot (1987). The results are worth
recording:

If p=0and 22=g+2, n=12,.., multiplying by s and summing for

n

n 21, we obtain the differential equation

(-as)P'(s)-(a+p)P(s)=p,,

whose non-degenerate absolutely monotone solutions are:
L. P*'w = % , the probability generating function of

(a) the zero-truncated negative binomial distribution if & € (0,1) and > -a;

(b) the zero truncated Engen generalized negative binomial distribution, if
a €(0,1] and B e(2a,-a);

(c) Logarithmic (a) if —f =a €(0,1) ; the logarithmic random variable may be
obtained either as the limit of zero truncated Engen’s extended negative binomial
random variables, or of zero truncated negative binomial random variables, with
index (shape) parameter going to 0. Each of these models has a prestigious
history of applications to population studies, since they were introduced by

Fisher et al. (1943) and by Engen (1974).
2. P = eﬁf,, (e,,,, —1) (the zero truncated Poisson, if @ =0 and £>0);
.8

l-e

W)

3. P = Qifi)—l—_'- (the zero truncated binomial, if @ <0 and —é eN).

Ya.p ‘{‘ a]

(1-a) -1
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More generally, the probability mass function of the random variable X satisfies

—’;—' =a+-%, n=1,2,.., if the corresponding probability generating function P (s)

can be written

B &=7+1-0P_(s),

where P is one of the probability generating functions in the preceding
a.p

enumeration, and e [%,l). Hence, the ratio of observed frequencies —=t ~ 2t
3 k

may be of some guidance on the choice of an appropriate model, by fitting
(*k+Yo,
%

~ Gk +(a+ ). Considerations on dispersion may give further insight on

which model to prefer.

2d. Clustering and the logarithmic model; truncated logarithmic and Zipf-
Mandelbrot models.

If none of the nestlings is extra-pair we cannot presume that the female did not
mate with other males aside from her social partner. It may be that she has a very
promiscuous behaviour, but extra-pair mating turns out to be infertile. On the other
hand, the availability of extra-pair males may also have a bearing on the number of
extra-pair nestlings. Promiscuous mating is certainly an opportunistic behaviour,
perhaps a delicate equilibrium between compulsion to bring in genetic diversity to the
progeny, and the need to maintain a monogamic social organization that favours the
raising of nestlings.

The fact that we cannot exclude promiscuous mating behaviour when there are no
extra-pair young in the nest is to some extent compensated by clustering when we do
find “bastard" progeny. This is a common situation in biology. For instance, some
female insects lay eggs on leaves appropriate for feeding their maggots. Of course the
fact that we do not find any eggs on a particular leaf does not mean that none of these
females landed on that particular leaf. On the other hand, we often find several eggs
on the same leaf, and “blindness" in what regards 0 is compensated by some
clustering. We now describe an appropriate model for this kind of phenomena: for

any 6¢€(0,1), we have 1n(1-9)=—297k . Therefore P, =_W97 , k=12,..,1s

k=1
the probability mass function of a random variable W ~ Logarithmic(6), with support

k=1,2,..., since it sums to 1:
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k k=12,..
W = + .
o lp =- 16 (0<8<1)
* In(1-0) &
As o) _ Hﬁ ,for #=1-1 we have E [W ]= var(W ] as in the Poisson model.
E(w,) 1-6 € e o

For Be(l—%,l) the random variable W, is overdispersed, and for @ (0,1-1) we
observe that ¥, is an interesting infinite support underdispersed model.

Fisher et al.’s (1943) derivation of the logarithmic random variable shows that it is
the weak limit as v — 0 of a sequence of zero-truncated negative binomial random
variables with index v, cf. Johnson et al. (1992, p. 286), and hence it is also related to
the Poisson randomness model. They have shown that if in a batch the number of

species represented by exactly one individual is n_then, denoting o = - the index of
diversity, the number of species represented by k individuals is approximated by
=, k=2,3,... The logarithmic distribution is considered a good fit for count data

whenever there is underlying clustering — number of bacteria per colony, number of
inhabitants per house, or number of animals per litter, for instance.

The maximum likelihood estimate of & is the solution 8 of

o 1

_————= = X,

(1-6)In(1-6) nig

which is easily computed using, for instance, the Newton-Raphson method.
By truncating to the right of s, we obtain the truncated logarithmic model

k k=1,..,s
1

sa,-
i

0
k
Jj=1
The maximum likelihood estimator of @ is the solution of

0(1-6")
-0y

=x,
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which may be computed from Patil and Wani’s (1965) tables. But for our purposes it
is simpler to equate sample and population moments, obtaining the explicit estimate

p m ~(s+2)m +(s+)m

m —sm
3 2

where m = %Z x' denotes the k -th sample moment.
j=1

We shall, naturally, shift these random variables to 0, X =W -1 and X =W -1,
this is equivalent to taking x +1 instead of x _as observations.

An important remark: in this truncated case it is no longer necessary to consider

k
4

that the parameter space is ® =(0,1). In fact, { pk}l , P, = is a probability

0j ’
DXy
=t

mass function for any 6>0, as in Table 1 (s=4,5), Table 2 (5=2,3,5) and Table 3
(s=4,5). In particular, if =1 we get Zipfs law { P, =%} , Wwhere

1=>1l~Ins+y (y~0.577 is Euler’s constant), which Zipf claimed was tied to the
k=1

‘principle of least effort’ in the sense that it would model phenomena shaped by
conflicting interests (Zipf’s primary examples are verbal communication — the need
to be socially understood constraining the use of rich personal vocabulary — and the
size of cities, seen as the result of the attraction/repulsion feelings that large human
settlements exert upon different individuals).

More general “scaling laws" or “power laws" { p, = ( C),ﬂ,} , where
k-4 k=1
<= Z;'» , with location parameter A and shape parameter p >0, have been
k=1 (k-2)

used by Mandelbrot (1983), namely to model self-organizing phenomena. Gell-Mann
(1994, p. 91-94) is an excellent naive introduction to the matter, with enlightening

comments on the role of parameters. When p >0, s may be «; in the simpler case
A=0, { P =—¢(l‘+—m+p} , where ¢() is Riemann’s zeta function. Some authors
) L

(Seal, 1952; Adamic, 2001) regard this zeta distribution as a discrete Pareto law. The
maximum likelihood estimator /5 of the shape parameter p satisfies

glot) 1<y
Sp+l) n '
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(Seal, 1952). Alternatively, equating the population and sample means we obtain the
estimator 5 , that satisfies <2 = X, which may be easily solved using the tables

S(p+h)
provided by Moore (1956).

Power laws play an important role in modelling dynamic phenomena where scale
effects contribute to self-organization. With the sole exception of the hypergeometric
distribution, all the other models related to Poisson randomness that we have
described are generalized power laws, cf. Johnson et al. (1992, p. 81). We believe this
is one more reason to prefer any of the other models (moreover, in the context of
initial Poisson randomness, the hypergeometric arises from a double
addition/conditioning scheme that seems farfetched in this context of modelling the
number of extra-pair young in each nest). Pérez-Abreu (1991) has shown that under
very mild assumptions the Poisson arises as the limit of power series distributions,
further justifying for the central role we have chosen for the Poisson model:

2e. Discrete lognormal model.

Discrete probability mass functions of the form {pk =—C('—g)ﬁ} provide an
even wider choice of models, among which Zipf-Mandelbrot’s, corresponding to
0(k) = p , is just the easiest to deal with. The generalized case, on the other hand, may

provide appropriate models where location may influence scale effects.
A particular choice O(k) =In(vk) leads to p, €—i k=12, ie. to the
k

discrete lognormal random variable

k k=12,..

X = 1 lnkz
1 xp[( )J

= e
C0,1)k 2

where C(0,1)=) L exp(—%) is the normalizing constant.

k=1

More generally, the discrete lognormal law with parameters ¢ and o

k k=12,..

X = 1 1 (mk—u)’
Ko p =—exp| ——
o C(p,o)k 2 o
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with C(u,0) the appropriate normalizing constant, seems a likely model for discrete
skew populational data. The parameters 4 and o may be estimated by numerical

maximization of the likelihood function.
Further observe that when x—>—o, the discrete lognormal law may be

considered a Zipf-Mandelbrot law with shape parameter p =-%-. In fact, if Ink <« | y| ,

1 l(lnk-—,u]2
p =————exp|-—
o C(n o)k 2 o

w L oxp| EMk=2p) | 1 1
k 20 C (u,0) kl .

3. Goodness-of-fit

For the data provided in Tables 1-6 — Tables 1 and 2 for yellow warblers
(Dendroica petechia) studied by Yezerinac et al. (1995), Tables 3 and 4 for hooded
warblers (Wilsonia citrina) provided by Stutchbury et al. (1994), Tables 5 and 6 for
collared flycatchers (Ficedula albicollis) studied by Sheldon and Ellegren (1999) —,
and using G* as a comparison criterion, we evaluate the goodness-of-fit for the
relevant models described above: the more traditional hypergeometric, Poisson,
truncated Poisson, binomial, negative binomial (in general geometric), truncated
geometric, in the odd-numbered tables; and the less common logarithmic, truncated
logarithmic, truncated Zipf-Mandelbrot and discrete lognormal models in the even-
numbered tables. We present asymptotic theory, since this way our results may be
checked easily using a spreadsheet, since they do not depart substantially from exact
results using exact algorithms such as those incorporated in StaXact.

For comparison purposes, our Tables 1 to 6 exhibit some overlap — i.e., for the
hypergeometric and Poison models — with Tables 2-4 in Neuhauser et al. (2001);
our goal is to show that the simple univariate hypergeometric model achieves exactly
the same results as their multi-hypergeometric model. We omitted brood size s =1
(hooded warblers) and s =2 (collared flycatchers), and in fact should have refrained
from analyzing other cases: statistical analysis with exceedingly small sample sizes
cannot be recommended. But this is a case study to assess the potential interest of
these models, not a statistical data analysis aimed at drawing conclusions from the
data. Brood size s=4 (collared flycatchers), and s=5 (hooded warblers) are
maintained in our analysis, as paradigmatic cases, important for the discussion in
Section 4 and comparison with Neuhduser ef al.’s (2001) views.

For the Poisson, logarithmic and geometric models, which have infinite support,
we give results both using the last class as an “aggregate" class, and using the
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corresponding truncated models. We use truncated negative binomial models only for
estimated index v =1 (geometric), since parameter estimation for the general
truncated negative binomial is unreliable. Anyway, only in the case of yellow
warblers, s =4 (Table 1) do we have the unexpected index estimate v* ~10; in all

the other cases (we would have v = 5 for hooded warblers, s =2 in Table 2; but for
this case, since we need to estimate two parameters, the number of degrees of
freedom would be 0), the estimate is either v* ~0 — in which case the logarithmic
model seems appropriate — or v" ~1.

As we have seen in Section 2, the logarithmic random variable is the limit of zero-
truncated negative binomial random variables with index going to zero. Hence,
whenever the index estimate of the negative binomial model is near zero we proceed
directly to a logarithmic model fit.

Parameter estimation has been done either by maximum likelihood estimation or
the simpler — as a rule, unbiased — estimation described in the appropriate
subsection of Section 2; we emphasize simple methods, and this is the reason why we
described them beforehand, providing a fair choice to the reader. Computer intensive
methods, bootstrap estimates, and other sophisticated methods may be preferable in
many situations — but in all cases the researcher must ponder whether the sample
size calls for such investment. In addition to the G* observed value, degrees of
freedom and p-values, we present parameter estimates (though the index of the

negative binomial may be fractional — —2“—- is an infinitely divisible characteristic

it

1-(1-p)e

it v
function, and thus ( L. ) is a characteristic function for any v >0 — we shall use
1-(-p)e

the integer part of v" as the binomial index), and expected frequencies, for immediate
visual comparison with the observed values.
There is no need, in the hypergeometric case, for explicit evaluation of the

A

parameter estimate p =< ; but this does not preclude the fact that it is implicitly used

in the computation of expected values under the null hypothesis, and that the
appropriate number of degrees of freedomis (s+1)-2=s5-1.

As regards the hypergeometric, the computation is done with the univariate
hypergeometric marginal model, which provides exactly the same expected values,
with much less computational effort than in Neuh#user er al. (2001). In fact, only
expected values of the univariate model are needed, and it seems farfetched to
compute univariate moments using the complicated algorithm for the multi-
hypergeometric model given in the appendix to Neuhéuser et al. (2001); this matter
will be further discussed in Section 4.

The hypergeometric and the binomial model give poor fits, even worse than the
crude Poisson model criticized by Neuhduser et al. (2001), or the negative binomial
that could account for some individual variability. Thus the classical count models
seem useless in the present context.
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On the other hand, the logarithmic and truncated logarithmic (power laws, in the
strict sense) provide in general excellent fits, the more general Zipf-Mandelbrot
scaling laws and the skewed discrete lognormal distribution seem interesting
candidates to elicit the randomness exhibited by these data. This clear pattern,
exhibited by the comparlson of Tables 1 and 2, Tables 3 and 4, and Tables 5 and 6,
has been confirmed using StaXact exact algorithms to compute observed values and
p -values.

It therefore seems plausible to consider the working hypothesis that eagerness for
genetic diversity and the need to have male cooperation in raising the brood are two
polarities that generate an elaborate equilibrium in these females mating behaviour.

4, Concluding Remarks

The purpose of the present paper, aside from contrlbutmg to the understanding of
some female birds’ remarkable sexual behaviour, is twofold:

1. To stress that the discrete models presented in elementary and intermediate
Probability and Statistics courses (hypergeometric, binomial and negative
binomial, and Poisson) are insufficient to model the rich randomness patterns that
arise when counting biostatistical phenomena. Johnson et al’s (1992)
presentation, on the other hand, which in many cases uses Gauss hypergeometric
generating functions, is too specialized for most practical users. Our choice would
be to invest in a coordinate approach to count data models as outlined in Section 2,
stressing patterns of randomness. One point we would like to emphasize once
again: truncation (and indeed other techniques aimed at restricting the support)
may be compensated by an interesting stretching of the parameter space (in our
examples, although the parameter space for the Logarithmic(6) is ® = (0,1), for
the right truncated logarithmic — power laws — the parameter space © = (0,%) is
much wider).

2. To underline the importance of clearly understanding statistical concepts, in order
to avoid misconceptions and mishandling of statistical algorithms. This is
worrying mostly because errors tend to have a fertile progeny - following their
publication. For that reason, we make explicit some points detailed in Marques
and Pestana (2002):

Neuhéuser et al. (2001) claim that the Poisson is not a plausible model, since
it attributes positive probabilities to unobservable values, and since the
percentage of extra-pair nestlings is high, this not a rare event.

The first objection — pointing out that impossible configurations have
positive probabilities in a model — is a statistical misconception (truncation
of the right tail solves part of the problem). Sharing their views about
modelling would prevent us from using almost all useful (i.e., mathematically
tractable) statistical models, most of which have infinite support, while all
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our observations are finite. “4 little inaccuracy saves tons of explanations”,
wrote Saki; in our view, this is the role of models: a good model is general —
since there is no Science of particular facts — free from concrete details,
although its properties reflect the striking patterns of the phenomena that it
represents; and this inbuilt simplification makes it mathematically tractable.

Regarding rare events, notice that the same model can be generated by very
diverse mechanisms, and that the point is whether or not it provides a good fit
to the available data. The fact that the Poisson distribution can be derived as
the limit of binomial distributions under a condition of stability in the mean
that has an appealing interpretation as a limit law of rare events cannot be
taken as a crude statement that it applies only to rare events; and it should be
noted that “rarity" concerns the binomial parent distribution, not the limiting
Poisson law: np ———> 1€ (0,), and hence the mean value E (X)=4

can be very large!

Although the question addressed in Neuhéuser et al. (2001), as they clearly
stated, was not “to model observed distributions, but to provide a pattern of
randomness with which observed patterns can be compared", their multi-
hypergeometric distribution seems quite unrealistic. It comes as no surprise
that Neuhduser et al. (2001) obtained very low p -values using G goodness-
of-fit statistics for their hypergeometric fitting. In fact they were, as a rule,

lower than using the Poisson that they criticize, as can be seen in their Tables
2—4 and in Tables 1-3 below.

It should be noted that there is a systematic error in their computations: in
order to use the chi-square goodness-of-fit statistic care must be taken that,

N

under the validity of H , Z p, =1. This is an important point, namely in
k=1

deriving the asymptotic chi-square statistic — the classes considered must be

N N
a partition of the support of the distribution, Z e = Z o, is the reason why

k=0 k=0
the number of degrees of freedom in the asymptotic chi-square is always
N -1 (minus the number of estimated parameters, if any). This accounts for
the discrepant values between their Tables 2—4 and our Tables 1-3. The
relative error in their Table 4, s=4, is quite high, 12%. We point this out
because it is a frequent error that needs to be eradicated, a mishandling that
can be misleading.
The computation of expected frequencies is highly simplified by using a
marginal hypergeometric model, instead of their complex algorithm for
computing expected values using the multivariate distribution.
The reader can verify that all calculations in Tables 2, 3 and 4 in Neuh&user -
et al. (2001) are greatly simplified with e =kp , the p  being the
univariate hypergeometric probabilities
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r n-r s n—-s )
k| s—k k|\r-k
p, = = ’
n n
0oL

where s is the brood size, n is the number of nests with brood size s s
n=sn_is the total number of young in broods of size s, and » the total
number of extra-pair young (we use the notations s, n and r of Neuhduser
et al. (2001) for an easy comparison).
In fact, the appropriate model for the number of individuals from each of r
classes C,...,C inasample of size n taken randomly, without replacement,

from a population of size N = K +..+K such that K individuals in the
population belong to class C,j=L.,r, is

X= [Xl s X J ~ Multihypergeometric(N;n;pI s P, ) , Where p, = ——’;’- :

ek k +.+k =n

But it is obvious that any univariate marginal random variable X , counting
the number of elements classified in class C has Hypergeometric(N,n, r)
distribution: we need only to collect all the other classes in a residual

E/’ =U C,. Therefore we get

(k»j)

(¥pexy)

=xl]= [][{Jj] ,and E [X"

Thus a much easier univariate hypergeometric model achieves the same goals
as the multi-hypergeometric put forward by Neuhuser et al. (2001).

Finally, we shall comment on the most important issue, i.e. what can be grasped
from quantitative data as regards the understanding of mating behaviour. As has been
established by Neuhéuser et al. (2001), the multivariate hypergeometric model and
the Poisson law must be rejected, since the associated p-values are always
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exceedingly small. Our results confirm this, and further establish that there is
departure from the kind of randomness defined by the classical (Poisson, binomial,
negative binomial and hypergeometric) count models, which always overestimate
frequencies for the intermediate cases.

But other patterns of randomness may be an excellent fit with interesting
behavioral interpretations — they are indeed an excellent fit, although as a general
remark we would like to point out that it is easier, of course, to obtain a better fit with
a model depending on more parameters, and that Akaike’s criterion ought to be used
to evaluate the relative benefit from using a more complicated model.

The observed frequencies seem indicate that the most common situation is either
zero or at most one extra-pair, or, more seldom, many extra-pairs. This seems to
indicate that only a small proportion of these females have a very promiscuous
behaviour (or successful promiscuous behaviour), hypothesis that deserves further
investigation.

Also, we have to bear in mind that we are modelling the number of extra-pair
young as a step in trying to ascertain why females seek extra-pair fertilization. We are
therefore looking in the present for questions which arose in the past, at an
evolutionary level, which are far from straightforward. On the other hand, even
random search by some females of extra pair fertilizations might lead to more
elaborate random models for the number of extra-pair nestlings if other self-control or
self-organizing mechanisms intervene in the process (such as regulation of the
probability of success of extra pair fertilizations, or the probability that a female finds
an available male, based on territorial constraints and nearest neighbour models).
More sophisticated models, such as Zipf’s equilibrium, therefore seem appropriate for
seeking a much better explanation.

Nevertheless, the importance of modelling the observed number of extra pair
nestlings should not be overlooked, as close fits to specific models may lead to
interesting working hypotheses. The different models presented in this work are some
of the possible alternatives when dealing with count data. For the available data,
which is very scarce, there is clear indication that the logarithmic or the truncated
logarithmic model often provide the best fit. This agrees with the explanation that
different females have different behaviour, with some of them displaying more
“eagerness" for promiscuous mating than others. Power laws, Zipf’s law and Pareto
models are closely related (Adamic, 2001, Mandelbrot, 1983), and seem to account
for sophisticated forms of equilibrium reached by natural populations. The more
general Zipf-Mandelbrot scaling models, and the discrete lognormal model whose
structure changes with scale, provide good fits and deserve further investigation with
larger samples. Scale regulation seems, indeed, to be the governing force behind most
dynamic self-organizing phenomena.
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Table 1. Extra pair nestlings in broods of size s, yellow warblers (Dendrozca petechia), data from
Yezerinac et al. (1995) - traditional count models. Observed and expected frequencies, G? observed
value, degrees of freedom (d.f.), and corresponding p-value. For the untruncated models with
infinite support, the last residual class represents P (X 2 ).

k o, Hyperg. Pois. Tr.Pois. Bin. Neg.Bin. Tr.Neg.Bin.
est.par. 0.429 0.500 0.143 1;0.750 0.680
s=3 0 10 8.707 9.120 8.506 8.816 10.500 9.618
1 2 4.610 3.909 4253 4.408 2.625 3.080
2 2 0.659 0.838 1.063 0.735 0.656 0.986
3 0 0.024 0.134 0.177 0.041 0.219 0.316
G’ 3.872 2.643 2.745 3.364 2.394 1.880
df. 2 2 2 2 2 1
p-value 0.144 0.267 0.254 0.186 0.122 0.170
- est.par. 1.730 2.462 0.432 10; 0.850
s=4 0 10 3.720 6.561 3.522 3.839 7.247
1 7 11.757 11.349 8.668 11.701 10.902
2 9 11.350 9.816 10.669  13.373 9.021
3 5 6.748 5.659 8.754 6.793 5.428
4 6 1.225 3.614 5.387 1.294 4.403
G’ 21.220 4.944 10.511  20.170 3.090
d.f. 3 3 3 3 2
p-value 0 0.176 0.015 0 0.213
est. par. ~ 1.538 1.935 0.308 1;0.458 0.299
s=5 0 17 6.060 8.374 5.712 6.202 17.855 13.216
1 8 13.878  12.883  11.055 13.783 9.681 9.271
2 3 12.406 9.910 10.698  12.252 5.249 6.504
3 3 5.410 5.082 6.902 5.445 2.846 4.563
4 3 1.151 1.955 3.340 10.210 1.543 3.201
5 5 0.095 0.797 1.293 0.108 1.827 2.246
G? 59.537  27.051 32.162  57.398 6.299 6.659
df. 4 4 4 4 3 3
p-value 0o 0 0 0 0.098 0.084
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Table 2. Extra pair nestlings in broods of size s, yellow warblers (Dendroica petechia), data from
Yezerinac ez al. (1995) - power, generalized Zipf-Mandelbrot and discrete lognormal models.
Observed and expected frequencies, G? observed value, degrees of freedom (d.f.), and
corresponding p-value. Maximum p-value, indicating the best fit, in boldface. For the untruncated
modela with infinite support, the last residual class represents P (X 2 s).

k 0y Log. Tr.Log. Mand. D.Logn.
est. par. 0.491 0.563 -3.32;5.02 0.07; 0.62
s=3 0 10 10.175 9.782 9.795 9.788
1 2 2.500 2.751 2.801 2.972
2 0.819 1.032 0.993 0.829
3 0.505 0.435 0.410 0.411
G’ 2.330 1.813 1.664 2.387
d.f. 2 2 1 1
p-value 0.312 0.404 0.197 0.122
est.par. 0.827 1.251 -4.57; 0.00 0.86; 0.59
s=4 0 10 17.424 11.829 9.697 8.519
1 7 7.209 7.401 8.211 11.840
2 9 3.977 6.174 7.135 7.570
3 5 2.468 5.795 6.303 4.139
4 6 5.922 5.801 5.644 4.933
G 10.402 1.573 0.970 2916
d.f. 3 3 2 2
p-value 0.015 0.665 0.616 0.233
est. par. 0.807 1.140 0.10; 0.00 0.55;0.84
s=5 0 17 19.148 12.866 16.589 15.829
1 8 7.722 7.332 7.858 9.665
2 3 4.152 5.571 5.148 5.282
3 3 2.512 4.763 3.828 2.987
4 3 1.621 4.343 3.047 1.771
5 5 3.846 4.125 2.530 3.467
G’ 1.956 4.085 3.499 2.890
df. 4 4 3 3
p-value 0.744 0.395 0.321 0.409
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Table 3. Extra pair nestlings in broods of size s, hooded warblers (Wilsonie citrina), data from
Stutchbury et al. (1994) - traditional count models. Observed and expected frequencies, G* observed
value, degrees of freedom (d.f.), and corresponding p-value. For the untruncated models with
infinite support, the last residual class represents P (X >5).

k or  Hyperg. Pois. Tr.Pois. Bin. Neg.Bin. Tr.Neg.Bin.
est. par. 0:692 1.200 0.346
§= 0 15 11 13.011 8.904 11.115
1 4 12 9.008 10.685 11.769
2 7 3 3.982 6.411 3.115
G’ 12.378 5.673 9.016 11.692
d.f. 1 I 1 1
p-value 0 0.017 0.003 0.001
est.par. 0.841 1.194 0.280 1; 0.566 0437
s=3 0 28 16.255 18.978 13.797 16.402 24.904 21.388
1 3 19.402 15.959 16.467 19.165 10.808 12.033
2 5 7.430 6.710 9.827 7.464 4.691 6.770
3 8 0.913 2.353 3910 0.969 3.598 3.809
G’ 50.026 28.388 34.119 48.589 12.300 15.594
d.f. 2 2 2 2 1 1
p-value 0 0 0 0 0 0
est.par. 0.944 1.172 0.236 1;0.473 0.455
s=4 0 23 12.098 14.000 11.225 12.258 17.027 17.217
1 2 15.377 13.222 13.161 15.155 8.974 9.378
2 4 7.048 6.244 7.715 7.027 4.729 5.108
3 4 1.379 1.966 3.015 1.448 2.492 2.782
4 3 0.097 0.568 0.884 0.112 2.777 1.515
G’ 45.957 27.390 29.800 44.203 10.734 12.187
d.f. 3 3 3 3 2 2
p-value 0 0 0 0 0.005 0
est.par. 1.667 2.500 0.333 (V= 0)
s=5 0 2 0.252 0.567 0.257 0.395
1 0 1.049 0.944 0.643 0.988
2 0 1.199 0.787 0.803 0.988
3 0 0.450 0.437 0.669 0.494
4 0 0.050 0.182 0418 0.123
5 1 0.001 0.083 0.209 0.012
G? 22.107 10.032 11.335 15.276
d.f. 4 4 4 4
p-value 0 0.040 0.023 0.004
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Table 4. Extra pair nestlings in broods of size s, hooded warblers (Wilsonia citrinaj, data from
Stutchbury et al. (1994) - power, generalized Zipf-Mandelbrot and discrete lognormal models.
Observed and expected frequencies, G* observed value, degrees of freedom (d.f.), and
corresponding p-value. Maximum p-value, indicating the best fit, in boldface. For the untruncated
models with infinite support, the last residual class represents P (X 2 s).

k 0 Log. Tr.Log. Mand. D.Logn.
est. par. 0.622 1.261
s=2 0 15 16.616 12.035
1 4 5.171 7.587
2 7 4213 6.378
G’ 1.985 2.789
d.f. 1 1
p-value 0.159 0.095
est. par. 0.673 1.137 0.54; 0.00 -0.03; 0.91
§=3 0 28 26.487 18.585 26.911 25.924
1 3 8915 10.568 8.479 9.457
2 5 4.001 8.012 5.032 4.007
3 8 4.597 6.834 3.578 4612
G’ 7.668 13.200 9.051 7.310
d.f. 2 2 1 1
p-value 0.022 0.001 0.003 0.007
est. par. 0.702 0.968 0.63; 0.00 -0.24;1.05
s=4 0 23 20.882 16.368 22.213 21.124
1 2 7.327 7.924 5.999 7.304
2 4 3.428 5.115 3.468 3.207
3 4 1.804 3.715 2439 1.634
4 3 2.560 2.877 1.881 2.731
G’ 7.809 9.014 4.441 7.669
d.f. 3 3 2 2
p-value 0.050 0.029 0.109 0.022
est. par. 0.821 3.000 0.69; 0.00 -2.47;2.01
s-5 0 2 1.432 0.044 1.881 1.667
1 0 0.588 0.065 0.445 0.518
2 0 0.322 0.131 0.252 0.247
3 0 0.198 0.294 0.176 0.142
4 0 0.130 0.705 0.135 0912
5 1 0.331 1.762 0.110 0.335
G* 3.549 14.179 8.232 2.381
d.f. 4 4 3 3
p-value 0.470 0.007 0.041 0.497
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Table 5. Extra pair nestlings in broods of size s, collared flycatchers (Ficedula albicollis), data from
Sheldon and Ellegren (1999) - traditional count models. Observed and expected frequencies, G
observed value, degrees of freedom (d.f.), and corresponding p-value. For the untruncated models
with infinite support, the last residual class represents P (X > s).

k or  Hyperg. Pois. Tr.Pois. Bin. Neg.Bin. Tr.Neg.Bin.
est.par. 2.500 5.000 0.625
s=4 0 0 0.164 0.031 0.040
1 0 0.143 0410 0.153 0.264
2 1 0.857 0.513 0.382 0.659
3 1 0.857 0.428 0.637 0.732
4 0 0.485 0.797 0.305
G’ 0.617 3.034 2823 1.456
d.f. 3 3 3 3
p-value 0.893 0.386 0.420 0.692
est.par. 1.529 2.000 0.306 1;0.393 0.301
s=5 0 9 2.595 3.683 2.339 2.739 6.684 5.795
1 2 6.133 5.633 4.679 6.035 4.056 4.050
2 0 5.476 4.308 4.679 5.319 2.461 2.830
3 2 2.306 2.196 3.119 2.344 1.493 1.978
4 2 0.457 0.840 1.560 0.516 0.906 1.382
5 2 0.034 0.340 0.624 0.046 1.399 0.966
G’ 39.528 22.126 24.729 36.906 8.291 9.538
d.f. 4 4 4 4 3 3
p-value 0 0 0 0 0.04 0.02
est.par. 0.804 0.822 0.134 1;0425 0.546
s=6 0 31 19.230 20.579 20.215 19.395 19.533 25.204
1 3 18.244 16.553 16.622 18.015 11.239 11.45
2 6 6.987 6.657 6.833 6.973 6.466 5.201
3 4 1.382 1.785 1.873 1.439 3.721 2.363
4 1 0.149 0.359 0.385 0.167 2.141 1.073
5 0 0.008 0.058 0.063 - 0.010 1.232 0.488
6 1 0 0.009 0.009 0 0.669 0.221
G’ 46.464 31.893 32.149 44.73 17.846 13.596
d.f. 5 5 5 5 4 4
p-value 0 0 0 0 0.001 0.009
est.par. 0.250 0.250 0.036 (v~0)
s=7 0 11 9.212 9.346 9.346 9.303

0 2.579 2.336 2.336 2.412



Count Data Models in Biometry and Randomness Patterns in Birds Extra-Pair Paternity

111

2 0 0.204 0.292 0.292 0.268
3 1 0.004 0.024 0.024 0.017
4 0 0.002 0.002 0.001
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
G’ 14.75 11.017  11.017 11.89
df. 6 6 6 6
p-value 0.022 0.088 0.088 0.064

Table 6. Extra pair nestlings in broods of size s, collared flycatchers (Ficedula albicollis), data from
Sheldon and Ellegren (1999) - power, generalized Zipf-Mandelbrot and discrete lognormal models.
Observed and expected frequencies, G observed value, degrees of freedom (d.f), and
corresponding p-value. Maximum p-value, indicating the best fit, in boldface. For the untruncated

models with infinite support, the last residual class represents P (X > s).

k O Log. Tr.Log. Mand. D.Logn.
est. par. 0.882 1.235 -500; 0.00 1.25; 0.08
s=4 0 0 0.825 0.653 0.402 0
1 0 0.364 0.403 0.401 0
2 1 0.214 0.332 0.900 0.974
3 1 0.142 0.308 0.904 1.026
4 0 0.455 0.304 0.398 0.001
G’ 6.993 4.562 3.005 0.0015
d.f. 3 3 2 2
p-value 0.072 0.207 0.223 0.999
est. par. 0.806 1.215 0.40; 0.00 0.19; 1.07
s=5 0 9 8.364 4.966 8.458 8.005
1 2 3.368 3.016 3.172 3.641
2 0 1.809 2.442 1.952 1.890
3 2 1.093 2.225 1.410 1.088
4 2 0.704 2.162 1.103 0.675
5 2 1.662 2.188 0.906 1.701
G 6.568 7.961 4716 6.173
d.f. 4 4 3 3
p-value 0.160 0.093 0.194 0.103
est. par. 0.662 0.724 0.77; 0.00 -0.58; 1.11
s=6 0 31 28.088 26.419 30.736 29.231



112 T. A. Marques', D. D. Pestana, S. F. Velosa
1 3 9.291 9.569 5.747 8.678
2 6 4.098 4.622 3.170 3.360
3 4 2.033 2.511 2.189 1.744
4 1 1.076 1.455 1.671 0.958
5 0 0.593 0.879 1.352 0.570
6 1 0.820 0.546 1.135 1.259
G* 9.572 10.274 6.978 9.036
d.f. 5 5 4 4
p-value 0.088 0.068 0.13? 0.060
est. par. 0.350 0.426 0.96; 0.01 -29.99; 3.61
s=7 0 11 9.749 9.214 10.935 10.47
1 0 1.707 1.960 0.407 1.043
2 0 0.398 0.556 0.206 0.266
3 1 0.105 0.177 0.138 0.100
4 0 0.029 0.060 0.103 0.047
5 0 0.009 0.021 0.083 0.025
6 0 0.003 0.008 0.069 0.015
7 0 0.001 0.003 0.059 0.035
G 7172 7.357 6.323 9.548
d.f. 6 6 5 5
p-value 0.305 0.289 0.276 0.089




